MICHIGAN ENGINEERING

FASoC: FULLY AUTONOMOUS SoC SYNTHESIS

Standard
libra User Spec.
ry Scope of
Proposed Work 1
: Soc
LK’JZ%;%“ = SA”?h‘Og. R synthesis | p| Package Board
TA 2 G HoR ynthesis i esign esign
L
Library w/ Verilog RTL for Structured Structured
Aucxiliary cells v #Digital & Analog Verilog y Verilog
TA 1 D'%';?,Ioﬁth'p PLagykgl%e Board Layout
GDSII GDSII 1GDS/I GDSII
v v v
AnalogIC Digital IC Package Board
Fabrication Fabrication Manufacturing Manufacturing

FASoC/IDEA FLOW TUTORIAL
(GF12LP)

An In-Depth Guide to Your First FASoC Design

Overview

This tutorial serves as a guide to a new user of the IDEA/FASoC program and will guide
you through all of the steps required to get your first design tapeout ready. There is also
useful information suited for people outside of IDEA/FASoC such as general information

about working in fin-FET technologies like GF12Ip and working in GitHub.

Michels, Noah

nmichels@umich.edu

Last Updated 6/21/21

Table of Contents

LC e g0] =T o [OOSR 2
OVerall STEPS 10 COMPIBLE ...t b b bbbt bt e bbb bt 3
@ LT=] 0 I I Tor. LA o] PRSPPI 4
Working in GF12 and FIN-FET TEChNOIOGIESccuiiiiiiiiieee e 4
EXIra GFL2 LAYOUL INTO:iiiiiiiee ettt sttt ettt e e s et eesbe e st e sneesbeenteaneenbeanneas 7
AUX CEI FIIE GENEIALIONiviiteitieieeieeie ettt bbbttt b e bbbt sttt e bt bt e st et et e st et e nbenbenbeanean 8
S O SR SRUPR PR 8
(010 O RU S PSOUR TP PRRP 10
ADSTIACE & IBT ..ttt b bRt R Rttt bbb reene e 11
[0 S TSSO TP SO UPTPTPTURTRURPRON 17
8 o SRS 17
AN T O = (0T [=T 1T 1o S SSPSSRP 18
SO SUSSSSPRPR 18
1][00 OSSR 18
] (o PSSP 18
1ol 4]0 6o [oF SO 18
o €] o1t AT a T AV T SRS SPRSS 19
T AT AT To o SO 19
Pre/POSt-PEX SIMUIALIONScviiiiiieeciesie ettt e e ste et eeneesteeseeaneesseeseeeseenseenseaneenreeneennee e 20
SPiICe TESDENCN GENEIALIONo.eiiiiiiec et bbbttt et e bbb 20
TOP-LEVEI TOI TAPEOULS ...ttt bbb bbbt e bbbt b e bt et e e e bbbt 22
TSSOSO 22
A - oo 107 Ao o (o] o A OP USSR 22
(o A LT] 0157 o o PSPPSR 22
1o 1 01 ST] T AV TSSOSO 22
LT 1 YT T LTS o o PSP S PR UPRTSORN 23
WOTKING WITH GIEHUD ...t bbbt bbbttt e bbbt 23
MEIGING CRANGES ... ettt bbb bbbt b e h e b e e b e bt e bt e bt e bt e bt e st e se et et e benbesbe et e nneas 23
PUSNING FINAL CRANQES.....ciuieiieii ettt et e b et e e s e e beesteaseesseeeeeneesseenseaneesseeneenee e 24
T L o L= o LU {8 o] o Vo S S 24

N o] 0T 010 3 RSP RRPRR 25

Getting Started

Note: Some file locations may not be general enough to be directly applicable to your design, so be sure to keep
your working directory in mind. Also know that some file locations or file structures may have changed since
this document was first made. Feel free to reach out to one of the FASoC members for help on first setup or any
questions you may have.

The first step toward making your design, is to setup your working directory for the current technology you are
working in, which for the purpose of this tutorial will be GF12Ip. It is probably best to just copy the directory of
another FASoC student. For now, lets use my directory as an example. There are probably many files you don’t
need from this directory, so if you want to copy only the necessary files that is fine too. Also before doing any
of this be sure you have gotten access to the FASoC directories and the PDK files.

Scp -r /n/Marquette/v/nmichels/GF12 ~/GF12

Great! The GF12 directory will be where you create your initial schematics and do your first tests of your
design. It will also be the directory where you create you work to generate your aux cells.

Next let’s go ahead and setup your FASoC working directory in your home directory. This directory is going to
be a copy of the current GitHub master branch and will be where you will do the traditional FASoC work such
as making your automated design (this will be covered in more detail later, so don’t worry too much about this
for now). Also before doing this step be sure you have been given access to the FASoC GitHub.

Scd

Smkdir fasoc

Scd fasoc

Sgit clone --recursive git@github.com:idea-fasoc/fasoc.git
Scd fasoc/private

Sgit checkout master

Sgit submodule update --recursive --init

Now we will go ahead and setup your block generator within the fasoc directory. You won’t be using this much
until later, but let’s go ahead and get it out of the way.

Scd ~/fasoc/private/generators
Smkdir ignore_[BLOCK_NAME]

There is a lot that goes into one of the generator directories, so for now let’s just copy one of the other blocks’
subdirectories.

Scd ~/fasoc/private/generators
Scp -r pll-gen/gfi12lp/flow_dco/* ./ignore_[BLOCK_NAME]

We will worry about actually changing all of the files in your new generator directory later, but for now we
have a good jumping off point.

Last thing is you will want to get someone’s “.tcshrc” file for loading all of the necessary modules when
working in the fasoc directories. For now, we will just use mine again. Can change file name if you don’t want
to overwrite your current “.tcshre”.

Scp /n/Marquette/v/nmichels/.tcshrc ~/.tcshrc

Nice! Now that we are setup, we will go over the overall steps we need to complete to get your design ready.

Overall Steps to Complete

Note: Everything through step 2.b will be done in GF12 directory and the rest will take place in fasoc generator
directory. Can focus on just getting on design to work for now, and worry more about auto generation later.
Also note that there won'’t be a section on creating/testing design schematic in Virtuoso, as it is assumed that
you already know how to do this (still feel free to reach out with questions if having trouble).

1. First step is to make design in GF12Ip
a. Just worry about schematic initially, then focus on the layout of aux cells
I. Goal is to use standard cells, so don’t use rf fets for basic components
ii. If standard cell doesn’t exist for part, make custom std cell (AUX cell) that meets normal
std cell sizing (equal height, and int. multiple of width)
b. After schematic made, run sims and optimize
c. Once optimized, test layout to get idea of how things will be placed
d. GF12lp has many more rules (finfet), so if problem takes >1hour, ask for help

2. Now break overall design into smaller AUX cells (hopefully considered this while making original)
a. Aux cells should meet standard cell sizing requirements (other than caps/inductors/resistors)
b. Generate files needed for AUX cells (see AUX Cell File Generation Section)
c. Make Verilog files defining 10 for each of these aux cells
d. Make Verilog top level which defines connections between blocks

3. Next Synthesize design
a. Synthesis scripts located in ./scripts/dc/
b. make synth
i. check results/dc/design_name.mapped.v
ii. Note that blank connectivity means block is connecting to power/gnd. Power connections
are defined in Innovus

4. Next APR design
a. APR scripts located in /scripts/innovus/
b. Also have to specify placements for blocks in custom_place.tcl
C. There are series of “stages” for APR. “stage” runs all previous “stages” if not run yet.
d. make “stage” for stage = init, place, cts, postcts hold, route, postroute, signoff
i. Also have make debug ’stage”

5. LVS&DRC
a. Focus on LVS first, as this is quicker and DRC will likely have issues
b. make lvs; make debug_Ivs
c. make drc; make debug_drc

6. Sims
a. Use Finesim/HSPICE to perform sims
i. Need custom python script to generate PEX results and post-PEX sims

7. TOP LEVEL & PADS....
a. This will be covered later, for now just focus on getting through block generation

Useful Locations

Recommend alias to quickly access some of these files, especially design manual. If you copy my
.bashrc/.tcshre, then you will have some already.

Tool Documentation: Most files found in /usr/caen/ for tool information (Ex: Innovus, finesim, hspice)

Technology Documentation: Most files found in /afs/eecs.umich.edu.edu/kits/ for pdk information. Documents
below are for GF12Ip, but can give idea of where to look if using a different technology.

e Design Manual: /afs/eecs.umich.edu/kits/GF/12LP/tapo_V1.0_4.1/source/12LP_Rev1.0_4.0.pdf
e STD Cells Rules/Info:
/afs/eecs.umich.edu/kits/ ARM/GF12LP/arm/gf/12Ip/platform_userguide/rOp0/doc/sc_12Ip_doc_userguide.pdf
e STD Cell Files: /afs/eecs.umich.edu/kits/ ARM/GF12LP/arm/gf/121p/sc10p5mcpp84_base rvt_c14/r0Op0/
e PAD Info: /afs/eecs.umich.edu/kitss ARM/GF12LP/arm/gf/12Ip/io_gppr_t18 mv10 mv18 fs18 rvt dr/rlp0/

Working in GF12 and Fin-FET Technologies

Note: This section will cover just some general tips and tricks for working in GF12 and other Fin-FET
technologies. If you are already familiar with this type of work, you can skip this section and focus on the stuff
relating more to FASoC.

Before working in your GF12 directory, be sure to source the .bashrc file. Some differences between two
Jbashrc files.

Ssource .bashrc_pre_gf12_ bkp
or
Ssource .bashrc_gf12

First thing we will cover is just some general layout explanations for this PDK. All of the images in this section
have been generated outside of Virtuoso in an attempt to not break any NDA rules, but feel free to follow along
in virtuoso to see exactly what | am talking about. Also, a quick note in case you haven’t taken 427/627. In your
classes you have likely been using IBM 130 and therefore are used to a lot of freedom in the layout process. In
smaller technologies such as GF12, things are laid out in a grid like manner. This means things like PC are
always going to go in one direction and will occur at standard intervals, so don’t expect to be able to do any
creative routing with this layer.

Okay, so before going into any more detail I think it is best to actually see an example. For this example, we are
going to look at an inverter standard cell in the sc10p5mcpp84_12Ip_base rvt c14 std cell library. This is the
library that we were using at the time of writing this document. More information can be found in the Arm user
guides which are listed in the section discussing useful locations.

The layout has a lot going on, so let’s start on the next page so we can clearly see everything. I highly
recommend having the design manual and the inverter standard cell open while reading through the next section
SO you can get a better understanding.

Consider an inverter:

RX (fin) —»
IR

RX (drw) Hl ll_lq
B [B

| |-‘ I

I | (NN

B T
- e

I_'I [= || .

I E NI
HEENEaS e D

M1-el

M1-el and M1-e2 occupy same metal layer but are fabricated during different lithography steps (This double
metal layer is the case for only M1-M3). NW and RX(drw) operate pretty much same as most other PDKs. CA
is used to make contact to the RX(fins) whereas CB is used to make contact with the PC. To connect to upper
metal layers, the CA/CB have to be followed by a VO (a zeroth via). Note that CA doesn’t have to directly
contact all RX(fins) thanks to the TT layer (not shown). The TT layer occupies the same area as the RX(drw)
layer and connects the CA to the RX. There is also another layer known as the TB layer (not shown) which
marks the area where TT should not be placed. The TB layer overlaps the PC and prevents a short between the
source and drain due to the TT layer.

6

The layer naming for the rest of the metal layers and vias is some variation of the following (changes depending
on the exact metal stack that is being used):
CA/CB-V0-M1-V1-M2-V2-M3-J3-C4-A4-C5-A5-C6-A6-C7-CK-K1-U1-K2-KG-G1-T1-G2-W-LB

More information and a useful diagram of the metal layering can be found in the design manual.

What if you need to control the gate of a PMOS without controlling the gate of a complementary NMOS? This
is done by using the CT layer, which effectively cuts the PC which it is over. Thus, you should still run the PC
and TB layer from the top to bottom of the std cell, but just place a CT layer between the two RX layers to
prevent the gate controlling both of them (note that TB layer is not shown in this fig).

—11T
e
i

LS

CT

L

|
S
-
=

I
[

Extra GF12 Layout info:

GF12 standard cells may not have schematic view initially, and there are issues with importing the .cdl
files, so ask for someone who already has the files
GF12 has many layer “purposes” (ex: drawing, el, €2, label). In FinFET technologies, some metal layers
require two masks (each mask corresponding to a separate lithography-etching process, meaning that
M1-el is the first fabricated & then M2-e2 is the second fabricated, although they are in the same layer).
In 12LP, we need el, and e2 masks for the M1/M2/M3 layers. There are specific design rules for el-el,
e2-e2, and el-e2. Best to use el/e2 layers at start rather than drawing layer for M1/M2/M3.

o Can ignore many of the other purposes for a given layer, though some are still used (ex: apmom

for defining capacitor areas for mom caps)

If you make custom aux cells, they should try to follow standard cell format

o Cell height should be 0.672 for 10p5 std cells

o Cell width should be 0.186+n*0.084 for some int n
STD cell naming convention:

o sc9 vs scl0p5: different top power rail sizing and metal layer purpose

o INVP vs INV: “cell”P includes parasitic FETS

o INV_XO0P6“F/N/R”: Cells sized for either falling, normal, or rising delays.
If your FASOC design is having trouble routing later, can make standard cell wider by using FLTGATE
layer. Just add extra PC column and cover with FLTGATE so it is not considered as a FET during LVS
When trying to route M1-el and M1-e2 in close proximity, try to do so by having them run parallel to
each other. The DRC rule for spacing is more forgiving in this scenario. Example below:

Good Bad

Once you have got your schematic finished and AUX cells laid out, you are ready for the next section. In the
next section we will work to generate files for your AUX cells that will be needed to get through the FASoC

flow.

AUX Cell File Generation

For each AUX Cell, need to generate .sp, .cdl, .lef, .gds, and .lib. This section will cover the creation of each of
these file types. Even if you are familiar with how to generate these files, it is recommended you review this
section as some of the files require some manual changes after they have been generated.

Sp:
1) Generate symbol for circuit

2) Add symbol to a testbench schematic and launch ADEL

3) In ADEL go to Setup -> Simulator/Directory/Host and set Simulator to hspiceD

ADEL (3) - SC_LAMP tb_4N schematic - o x

i 2| &< (¢ i

I}
b 7 8 x|
I

Enable. Arguments

00 x T Bt

‘
'

il
1

B ey e

4) Go to simulation -> Netlist -> Create and save the resulting file as [filename].sp

==

1821) | Create

Plotafter smuation: Auo__ [proming moce: Replace |3

Display . 71 vien man

Recreate

£ il _
flepame: [pmgmeany G

| i =
ADELL (3) - SC_AMP tb_4N schematic - o x B Save As x
ik_Vew belp cadence
Launch Session Setup Analyses Variables Outputs Resuits Tods Caibre Help cadence B o Fv -]
- - — = I by Lookin: | //marquette/vinmichels/GF12/aux_cell = EE
=F=IFVERT - NN V=] CEEERE rm— 5
Run s
& 1BM.
DesignVanables ﬁ E 5 St ettt B9 1eMam.. B old_aux Folder 30
Q sty ot & er12 [.pass_gate_4N.sp.swp 12 KB swp Fle 1
gmecr»emng (] i 3 oric B pass gate 4N.sp
MDL Contrdl t:: o nmichels
Reliabilty » = ey .S., a0 L Lk 11 1) 112 e
% . .
Optons » i s e 0
e a——
o | -] [e

Files of type: |All Fies (*)

B concel

| s st | 17 ¢ | st pee |

5) Open file and delete the following portions to finish

00~ O U W R

10
11
12
13
14
15

Generated for: hspiceD

#% Generated on: May 1 14:15:56 2821
#* Design library name: SC_AMP

#* Design cell name: tb 4N

#% Design view name: schematic

.LIB "/afs/eecs.umich.edu/kits/GF/12LP/V1/0_2.1/Mod®
.PARAM wireopt=9

12LP _Hspice.lib" TT

.TEMP 25.0

.OPTION

+ ARTIST=2

+ INGOLD=2

+ PARHIER=LOCAL
+ PSF=2

17
18
19
20
23

2

)

= Library name: SC_AMP

= Cell name: pass_gate 4N

#* View name: schematic

.subckt pass_gate 4N vdd vnw vpw vss x y clk clkb

xn@ x clk y vpw nfet m=1 1=14e-9 nfin=2 nf=2 par=1 par_nf=2 asej=2.64e-15 adej=1.32e-15 psej=524e-9 pdej=240e-9 p
devdops=1 pdevlgeos=1 pdevwgeos=1 psw_acv_sign=1 plnest=1 pldist= plnrlent—@ cpp=84e-9 fpitch=48e-9 xpos=-99 ypo
5=-99 ptwell=0 sca=0 scb=0 scc=0 pre_layout_local=-1 ngcon=1 p_vta=0 p_la=0 ulmult_fet=1 lle_sa=77e-9 lle sb=77e-
9 lle_rxrxa=84e-9 lle_rxrxb=84e-9 lle_rxrxn=192e-9 lle_rxrxs=192e-9 lle pcrxn=65e- ERAT pcrxs—ﬁSe 9 lle_nwa=2e-6
1le_nwb=2e-6 lle_nwn=192e-9 lle_nws=132e-9 lle_ctne=0 Lle_ctnw=0 lle_ctse=0 lle ctsw=0 lle_sctne=0 lle_sctnw=0 11
e sctse=0 lle_sctsw=0 lrsd=30e-9 dtemp=0 1_shape=0 1_shape_s=0 nsig_dopl=0 nsig_dop2=0 nsig_dibl=0 nsig_pc=0 nsig
rx=0 fc_index=0 fc __sigma=3 analog=-1 nf_pex=2

%xp@ x clkb y vow pfet m=1 l=14e-9 nfin=2 nf=2 par=1 par_nf=2 asej=2.64e-15 adej=1.32e-15 psej=524e-9 pdej=240e-9
pdevdops=1 pdevlgeos=1 pdevwgeos=1 psw_acv_sign=1 plnest=1 pldist=1 plorient=0 cpp=84e-9 fpitch=48e-9 xpos=-99 yp
05=-99 ptwell=0 sca=0 scbh=0 scc=0 pre_layout_local=-1 ngcon=1 p_vta=0 p_la=0 ulmult_fet=1 lle_sa=77e-9 lle sb=77e
-9 lle_rxrxa=84e-9 lle_rxrxb=84e-9 lle_rxrxn=192e-9 lle_rxrxs=192e-9 lle_pcrxn=65e-9 lle_pcrxs=65e-9 lle_nwa=2e-6
1le_nwb=2e-6 lle_nwn=192e-9 lle_nws=132e-9 Lle_ctne=0 Lle_ctnw=8 lle_ctse=0 lle ctsw=0 lle_sctne=0 lle sctnw=8 1
Le_sctse =0 lle_sctS\rB lrsd=30e-9 dtemp=0 I_Shape—e L_shape_s— nsig dopl =0 nsig_t _dop2=0 n51g dibl=0 nsig_pc=0 nsi
g_rx=0 fc_index=0 fc_sigma=3 analog=-1 nf_pex=2

.ends pass_gate 4N

#+ End of subcircuit definition

= Library name: SC_AMP
=+ Cell name: tb_4N

** View name: schematic
xilgnetl net2 neté net4 net8 net? net3 net5 pafs ¥
EN

.cdl:
1) From Virtuoso CIW go to files -> Export -> CDL

wort

Refresh,

Make Read Cnly..

Bookmarks »

1 SCAMP t 4N schematic

2 SCAMP pass gate AN schematic

B 3SCAMP possgote 4N symbol
B 4 L ux cols 1055 rack 294655 sngie 45t oo

Close Data..

it - Log: /n/marquette/v/nmichels/CDS.log
Eads Gpuons PoK_tep cadence
Erro Waminge:
. meccessful. B

a. See example settings below: everything else left default

Virtuoso® CDL Out x l

Template File i
Erowse... Load.. Save..
Design to be Netlisted
Library Name SC_AWP (o Lirary Browser T
Top Cell Name passgatedn
View Name schenatic
Switch View List auCdl schematic
Stop ViewList auca1
Output
Output CDL Netist File netlist L Vew.
Run Directory . | \Browse.. |
Netisting Mede Diitsl & Analog
Run in Background ¥
Renetiist g
@D ol Defauits) Apply) Help

2) Save output netlist file -> Save as [filename].cdl
a. Sometimes doesn’t show output netlist on first try, so may run twice
3) delete the following portion to finish

1

2 * auCdl Netlist:

3%

4 = Library Name: SC_AMP

5 * Top Cell Name: pass gate 4N
6 * View Name: schematic

7 * Netlisted on: May 1 15:14:03 2021 <-\
8

9

18 *.BIPOLAR

11 *.RESI = 2000

12 *.RESVAL

13 *.CAPVAL

14 *. DIOPERI

15 *.DIOAREA

16 *.EQUATION

17 *.SCALE METER

18 *.MEGA

19 .PARAM

20

21

22

23

24 * Library Name: SC_AMP

25 * Cell Name: pass_gate_4N
26 * View Name: schematic

27

28

29 .SUBCKT pass_gate 4N VDD VNW VPW WSS X Y clk clkb

3@ *.PININFO X:T clk:I clkb:I Y:0 VDD:B VNW:B VPW:B VS5:B

31 MNe X clk Y vPw nfet m=1 1=14n nf=2 nfin=2 fpitch=48n cpp=84n ngcon=1 p_la=0
32 + plorient=0 analog=-1.0

33 MP@ X clkb Y VNW pfet m=1 1=14n nf=2 nfin=2 fpitch=48n cpp=84n ngcon=1 p_la=0
34 + plorient=6 analog=-1.0

35 .ENDS

abstract & .lef:

11

1) Prior to exporting abstract or .lef file, need to make sure layout metal layers have mask “colors” locked

a. Open Layout and select all metal layer of a given mask

b. open properties (q)

c. set mask color to 1 for el layer and 2 for e2 layer, then set state to lock
d. repeat for each metal layer with masks

o, [~ I
| [n

AV v NV v AS ¥ NS ¥

| Layer ~ | Purpo.] V] S| Edit Rectangle Properties
BP drw
CcA drw J Apply -5 & Commen 5
a2} drw = 3
CPPa4] Shapes (5} Attribute | Connectivity Property
= =E Rectangle: M1/e 1
g yer (W1 B
M £l — Rectangle: Mi/e 1 . §
M iz = Rectangle: M1/e1 Leit ASIS Bottom ASIS
M2 el o
M2 €2 J Right ASIS Top ASIS
Nw drw |
Nw label Width ASIS Height ASIS
OUTLINE drw ||
pC T MPT Coloring
RC drw |
RVT drw Color |maskicolor [sae jock [I
X drw |
RX fin o
SXCUT label ||
8 drw
T dw _Deselectin Canvas [ox IR
Vo drw -

_Apply) |_Help |

2) From working directory, run /usr/caen/icadv-12.3.500.2100/bin/abstract &

a. If have source .bashrc_gf12, can use absgenl2 (later lefgen12)
b. Load library you are working in

Abstract - [no current library]

Click -> load library

| File Bins Cells Flow

Help

@Jﬁlﬁl

§ Bin

7|

| cels | cel | Layout | Logical | Pins Exract | Abstract | verify |
§ core [i
10 o
¢ Comer 0
| Block a
t Ignaore o
i
1
| Interpreter: - Tcl # 3kl
Log | Command History |
INFO (ABS-19020): Starting @(#)3C05: ui version ICADV1Z2.3-64b 07/10/2018 18:46 (sjfhu315) 8, sub-version ICADVL & 21
. |2,3-648,500,21 , on 3,18.26
| |INFO (AB3-19023): This is the Openficcess variant of Abstract Generator.
i LIB scl0pSmcppdd_121p_hase_rvt_cld fram File /n/marquette/v/nnichels/GF12/cds.lib Line 46 redefines
¢ |LIB scl0OpSmcppdd_121p_base_rvt_cl4 from the same file (defined earlier,)
{ The directory: '/n/gaylord/l/uaswanth/Research/kits/GF/12nn/12LP/exanple_cdl_import' does not exist
) but was defined in libFile '/n/marcuette/w/nnichels/GF12/cds.lib' for Lib "example_cdl_import'.
1
|
#

I ‘ abstract> |

3) Select cellview you want to generate abstract for, then run “pins” with the following settings:

SC.AMP - B x
57 1 &0 o
| 0] 2| o~|[0] sa| 2| &
Bin cells | Cell | Leyout | Logesl | Pins | Edract | Absiacl | Verty
E—— o ’
May also add SXCUT layers ol] !
. ey 4| o gusen y
where appropriate pas_sue3r y
oy !

Imerpreter. , Tcl Sk

Log Command History
Ire uslrg =n optlons o replay file fron another 1lbrary and the cell does not eedst In the destination Llbrary.
Ensure that the coll ewists @ then try again.

sErrors (FBS-11808): Failed to open the pass_gste lauout N call because sither the cell doss not sist or uou 3
re using an options or replay file from another library and the cell does not exdist in the destination library,
nsire that the cell exists g then try sgain

tirrors (FBS-11908): Failed 1o open the pass_gate_laout 3N cell because either the cell doss not exist or wou 3
re uzirg =n options or replsy file from another 1lbrary &nd the cell doss rot exist In the destination libraru.
Ensure that the cell exists and then try again.

DED (FBS-10602): Library SC_AH0 Loackd 12 cells
D {fB5-10507): Library SCAHF cpared

| m=a
[Step Test | Boungary | locks | [Step Boundary | Blocks |
* Pins || IS0 Ted fakels 1o pins | ® Pins ||| ahel search depth 0
(U) (WL L) (2 12) (3 W3] (1P WL 1) [Geomelry ssarch dapth: E—
Text Manipulation
Remove Text.. Replace With.. |
Enwer pin names (regular expressions) e
((V(DD]EC)) | (vled|ec))) ()78 ol
R V>
ERTEED) V>
Ground pin names (regular sxpressions)
" ((VSS1BHD) | (vss |gnd) (1078 Add | Do |
W Preserve text labels
Clack pin names (regular expressions). I Restrict Pins 1o PR Soundary
mBin—| Analog pin names greqular expressions) TBin—
+ Core + Core
Ouiput pin names (regular expressions)
Exclude existing tarminals (regular expressions)
Exclude existing pins on layer.
Specify the iop melal layer for cover blackags:
Run | Cancel | Help | Run Cancel Help
[step || Map | Text Blocks [Step Map ‘ Text ‘ Boundary

Using geometry on layers:

* Pi # Pins
1| create boundary: as needed "E\uukage

I Preserve local blockages in routed blocks

HW VO M1 M2 M3 C4 CF K1 K2 K3 K4 HL H2 G1 G2 LB A4 CK T1 W N1 HG ULl U2 US KH WY1 V2 J
3 PC HI RX PFins

_1 Create power pins fiom routing
Using geomelry on layers

[#djust Boundary By

M1 M2 M3 C4 C5 K1 K2 K3 K4 H1 H2 G1 B2 LB A4 Ck T1 WW N1 HE UL U2 U3 KH W1 V2 I3
Lef

Right

Top
Bottom:

[Fix Boundary To

Left o
Right: 0, 252
Top 0,672
Bottor o
[Bin™] [Bin

Core

¢c=ll Qutline Dimensions (width, height)

Run Cancel Help Run Cancel Help

12

13

4) Run “Extract” with the following Settings (May also add SXCUT layers where appropriate):

| File Bins Cells Flow

SC_AMP

Help

Cells
0 [
Camar [
Block. [

| igroee a

Intarpeetr: + Tel & Stal
Log

TR = [EIF7
Co——

cell
pass_pale_12H

pass_yate_GF
pass_gals_6N
pass_yate_6R
pass_yate_9F
pass_gate oM
pass_gate_OR

Layoul | Logicsl | Pins | Exvact | Abstact | venty |

Command Hitory |

re using n ootions on replsy file from another Librany end the cell coes rat edst

Ersurn that the call exists and then try agaln.

iErre (GBS L00): Tailed fo coen fhe pase_gste lauout 3| cell becasse either the call coss not aist
re using an options or replay file from another librany
Ensure that the call exists and then try sgain

#irrore (ABS-11808): Failed to open the pass_gate_layout 3N csll becasse either the o

re using =n options or replau fils from ancther llbrary
Ercire hot T col1 ioks e then tr caain.

DD (851021 Liorary 5248 Lo 12 calls
opered

cell does rat exdst In the destlnstion librarg,

In the destiration lbrary.,

all does not eist o o 3
‘e call doss rof axist In the destination 1ibrard.

or v 2

WD {FBS-10507): Library SCAF
==
[Step Paower
v FPins W Extract sighal nets
Extract || _
Layer Assignment for Signal Extraction
|Layer Geometry Specification Connectivity |Create Pins |5
[k KH Strong "
Vi M1 Strang LJ
o [v2 e Strong L
o (73 J3 Stron; i
N MW Strang LJ
i [ve o Stron,]
Make sure to add these e | oo
[Exfract Limitations
Maximum depth 32
Maximum distance:
Minimum vdth:
Cgin————| [Create Must Connect Pins If Required
& e 1 Ahways
Only on terminals named
Run Cancel Help
[Step signal | Power |
v Ping I Calculate hisrarchical arenria
@ Edr@ct || coiculate input pin antenna
I Calculate output pin antenna.
I Calculate inout pin antenna
_{ Calculate antenna metal area
_{ Calculate antenna metal side area
["Layer Assignment for Antenna Regions
|Layer |Geomstry Specification |Region |0vide
o Jrc PC and RX [Gate [
o [rx R andnat PC [Drain [
mdd | Edt | Detete
[Bin 1 Use different layer assignments for antenna calculations only
[Layer Assignment for Antenna Extraction
Core

Layer Geametry Specification
o Juz uz
o fuz uz
o fkn KH
o vt w1
o vz V2
= N J3

Add Edit Delete

:

Signal nets to be excluded from antenna calculation

Run Cancel

Help

[Step signal antenna | General
<L s W Exract power nets
+ Bract ||
Layer Assignment for Powar Extraction
Layer Geometry Specification |Create Pins |
o Jme w1 T
o [m2 Mz i
FRCE M3 -
1 o o -
[N =
Add Edit Delete
Exract Limitations
Mazimum depth B
Maximum distance:
Minimurm wicth:
CEin | [Create Must Connect Pins If Requirsd
+ cors o Always
Only on terminals named:
RAun Cancel Help
[Step Signal | Power | antenna
~ Pins 1 Use net information from design
* Bract ||| aper connestivity
(HI M2 V1) (M2 13 W2) (M3 £4 J3) (G4 C5 Ad)(CH K1 CKy (KD K2 UL)(K2 K3 U2)(K3 K4 U3) (kK4 H
1 KH) (HL HZ NIDHZ GI HG) (BT G2 TL)(GZ LB W)
Pin Geomatry Restriction
Layer Geometry Specification Restrict
add || Edit || Delete
CBn |
% Core

Run Cancel Help

5) Run “Abstract” with the following settings (mostly default, but everything is shown below):

Abstract - SC_AMP

File Ens Cell Flow

Help

0|8 >| 0| =l 7|

Bin cells | cel | Layout
pass_gale_1 20 v

Logical | Pins | Edraet | Abstract | Verty |

o F
Comer 0 pass_ga 6F v
Block 0 pass_gate BN y
lanoe 4 pass_gate OR y
pass_yate_9F v
pass_pate_9n y
pass_gale_SR y

Inerpreter. Tel % St
Log Command Hictory

e uslrg sn options or replsy file from anothen Library snd the cell Goes not exist in the cestination Library.
Ersure that the call exists and then try again.

{FBS-11808) : Failed to open the pass_gate_layout_3N cell becawse either the cell does not ewist or uos a
re usir\i an options or replay file from smlher library and the cell does not exist in the destination library,
Ensire that the cell exists and then tny sgaln.

#irrors (FBS-11808): Failed to cpen the pass_gate_layost 3N cell becasse either the call does not ewist or yos 3
e cirg. en optiens or reploy £ e i Sire Tl 2o 108 coll doce. Aot mries 1 e ek oot o Lobrra.
re Thet the 211 swisks Bnd then Ty saain.

LE0 §ES-1080): Library S8 0 Lowcd 12 alls
IO (fB5-10507): Library SCAP opared o
| famstracts
step adust | Blockage | Densiy | Fractre | ste | overiap | s | Adjust | Blockage | Density ‘ Fraciure ‘ Site ‘ Overlap ‘ Grids |
- Pins i
- Exract B RHED [Layer Assignment for Blackages
Create bound
R] L |Layer Geometry Specification Biockage |Pin Cutout [Max Spad[S
Boundary pin max distance to houndary,
signal geometry groups: single — A JHG HG Detailed L -
U u1 Detailed L d
Power Nets 1 Juz uz Detailed LJ d
1 Create boundary pins 1 oz U3 Detailed] 0
Boundary pin max distance to boundary, T P borailed - =]
1 Create ring pins o
Ring pin max distance t houndary C L Detailed L -
-1 Follow ring pin w2 Ve Detailed - a
Power geomelry graups: single | o |13 J3 Detailed - d
Power rail widths, offsets and shape. WO Vi Detailed | | i
|et |shape |wicitn |orsst | =]] =
VDD o 0.156 0534
Bl EETETTE, ! add | Eat | oo
i [vss [abutment 0.036 048
[Bin Cutwindow around pins large enough to drop via
Routing channel for cover biockage:
Core pgd || Delete J J
[TCORE/BUMP Parts
Cell edgeredes facing care narth
Powser/ground net to have CLASS CORE/BUMP pons
[TDDICE)) [(v{dd [e2))) (D78 Adjust | Blockage | Density | Fractre | site | Overlap | Grs |
1 Allow ruiple CLASS CORE ports
1 Copy CLASS CORE ports I Calculate metal density
1 Create CLASS CORE ports only if pin meets cell boundary I Use layer assignment far signal extraction
W Create CLASS CORE ports if pin mests nan-care facing edge 1 Use layer assignment for antenna extraction
) Ciean CLRRS EUP [6lis 1 Use layer assignment for power exraction
[Layer Assignment for Metal Density Regions
‘Layer ‘Geometry Specification Width Height 1
o K4 K4
Run | Cancel Help | o |HL H1
Adjust Blockage Density Fracture | Site | Owerlap ‘ Grids | o |H2 Hz
o |G G1
[Fracture o G2 G2
LE LE
W Fracture pins il #
W Fracture blockages Add Edit Delete
[45 Degree Geometry
Default density window width: 20
Stair-step coverage partial ~ — Default density window height: 20
Stair-steps width: 0,047
Fracture ‘ Site ‘ Overlap | Grids |

Site name

Defing new site name
I Calculate site pattern for gate-array cells

Addjust Blockage Density

Create overlap boundary

Using geometry an layers,

[Sub-Cellview to Site Mapping

Sub-Cellvigw

Grid analysis mode:

Size factar to apply:
Smooth factor to apply:

djst | Blockage | Density | Fractre | Site | owerlap | Grids |

report

["Routing Grid Yalues
Metall pitch 0.064
Metall affset 0
MetalZ pitch: 0,064
Metalz offset 0
Metald pitch 0.064
Metal3 affset 0

[Routing Grid Calculation
Maximum metall pitch (% ahove line to via); S0
Waimum metal2 pitch (% above line to wia) 50
Maximum metald pitch (% abave line to via) 50

1 Require diagonally adjacent vias
Clearance check:

euclidean —

M1 M2 M3 C4 C5 K1 K2 K3 K4 HL H2 G1 G2 LB A4 CK T1 W N1 HG UL U2 U3 KH W1 W2 J3 PC N
I R

I —

6) Don’t have to run verify, but here are the settings (will probably get some errors messages):

Abstract - SC_AMP Check | Target |

| Fue mns cens Fiow Help
02 = a a W Terminals

| ~ W Manufacturing grid
Bin Cells | Cel | Layout | Logesl | Pins | Edract | Abstract | very

d pass_pate 121t <

| Block.
| igroee

Check | Target |

pass_gate_3R o W Run target P&R system

Target system selection Encounter —
Interpreter - Tel & Skl
kog Commang Histr Target system commancline, [encounter -nowi

re uslrg an options or replay File from amther Library and the cell does not exist In the destiration llbrany,

Ensure that the cell ewists and then try again. Tech LEF file:

+frrors (FES-11903): Failed to open the pass_gste lauout 3W coll becauss sither the cell doss rot exist or uou 3 [Design options
re using an options or replay file from another library and the cell does not esdst in the destiration llbrary,
Ensire that the cell exists and then try sgaln.

sErrores (P65-11908): Failed o cpen the pass_gate lasout 3N cell becauss sither the call doss rot exist or uou 3 ' Place multiple (mirrored) instances in test design
re using an options or replay file from another library and the call doss not exist in the destination library. . Flace mump‘e rows in test des‘gﬂ

Ensure that the cell ewists and then try again.
D Ems—l:sm)z Library SC_AHP Loaded 12 cells W Create and route power ring
TN {FBS-106507): Librany SC_AP opaned

| [abstract> [Router options

Special rauting canfig file
Routing engine MNanoroute —
Routing time limit: 1

Routing config file:

“erify geometry options:

Ignore messages (regular expressions):

EXCHANGEF ORMATS -USER-525
EXCHANGEF ORMATS -USER-392
EXCHANGEF ORMATS -LUSER-34
no clack net

7) From Virtuoso CIW -> File -> Export -> LEF:

Virtuoso(R) LEF Out x
LEF Fle N . —
e Name s/GF12/aux_cell/pass_gate_4N. lef
Library Name |SCAMP .
& cells . cellListFie
(o] t Cel
utput Cell(s) pass_gate_4N
o Cutput View(s) abstract [——
EDIF200...
Refresh... - Log Hle Name
Make Read Onl LoL...
ake Rea Y-
Haokmarks k LEF... Output Techndlogy Information Only -
&® 15CAMP te_4N schemati SREam: ; —
15, pass_gate_4N schematic Generate Cell List File By Cellsin Design
OASIS... R
L 2 5C_AMP pass_gate 6N layout -
PRFlatten... Use Template Ale & Use GUI Relds
b 3 SC_AMP pass gate SN layout = = A =
0 4 5C_AMP pass_gate 4N layout Template File Name
;5 SCAME th 4N Scheimialic Save Temnplate File Name Save
|
B 6 SC_AMP pass_gate 4N symbol
v
B 7 pll_aux_cells_10p5_track 2p4G_stg single_4stk symbal IOutput Edlogrlocked Color:ShepeiBnly — I
Cancel . Defaults Hel

Close Data...

Exit.. V12.2-64b - Log: /n/marquette/v/nmichels/CDS.log - o X
BN 1c0s options oK Help cadence
Loading layers.cxt
Loading lefdef.cxt =

I 1] B
limouse L Iz R
1] > l

16

8) Open .lef file to make manual modifications to complete
a. Delete PROPERTYDEFINITIONS
b. Add SITE custom...
c. May need to manually change output pins to be OUTPUT if not specified during pins
d. Probably better way of doing this so it generates it correctly initially

Change direction to INOUT and
use to POWER

1 VERSION 5.8 ;
2 BUSBITCHARS "[]" ;
3 DIVIDERCHAR "/" ;

-
5 PROPERTYDEFINITIONS
6 MACRO CatenaDesignType STRING ;
7 END PROPERTYDEFINITIONS

1

]
9 SITE custom 1@pSmcpp84 121p
160 CLASS CORE ;

11 SIZE 0.084 BY 0.672 ;

12 SYMMETRY Y ;

13 END custom_18p5mcpp84_121p

e
15 MACRO pass_gate 4N

16 CLASS CORE ;

17 ORIGIN ® © ;

18 FOREIGN pass_gate 4N @ @ ;
19 SIZE ©.252 BY 0.672 ;

20 SYMMETRY X Y ;

|21 SITE Coresite ;

] Change CoreSite to:

77 PIN_VAW

Rk

24 USE_SIGN

25 PORT

26 LAYER N ;

27 RECT -0.1 0.336 0.352 0.772 ;
28 END

29 END VNW

30 PIN VDD

31 DIRECTION INOUT ;
32 USE POWER ;
33 SHAPE ABUTMENT ;

34 PORT

35 LAYER M1 ;

36 RECT MASK 2 -0.009 ©.594 0.261 0.75 ;
37 END

38 END VDD

39 PIN V5SS

40 DIRECTION INOUT ;
41 USE GROUND ;
42 SHAPE ABUTMENT ;

custom_10p5mcpp84_12Ip

26 PIN VPW
27 DIRECTION INOUT ;
28 USE GROUND ;

Manually ADD VPW
X-bounds same as VNW

29 PORT

30 LAYER SXCUT ;

et RECT -8.1 © ©.352 0.336 : Y-bounds 0 & bottom of VNW
32 END

33 END VPU

Y should be OUTPUT (in this example)

43 PORT

44 LAYER M1 ;

45 RECT MASK 1 -0.009 -0.048 0.261 8.048 ;
46 END

47 EMND Vss

48 PIN X

49 DIRECTION INPUT ;

50 USE SIGNAL ;

51 PORT

52 LAYER M2 ;

53 RECT ©.02 0.087 0.852 0.555 ;

54 LAYER M1 ;

55 RECT MASK 2 ©.02 0.08 0.245 0.112 ;
56 RECT MASK 2 ©.62 0.08 0.852 0.169 ;
57 RECT MASK 1 ©.82 0.53 0.245 0.562 ;
58 RECT MASK 1 0.02 0.473 ©.852 0.562 ;
59 LAYER V1 ;

60 RECT ©.02 0.498 0.052 .53 ;

61 RECT ©.62 0.112 0.052 0.144 ;

62 END

63 END X

64 PIN Y

65 DIRECTION INPUT ;

ob USE SIGNAL

67 PORT

68 LAYER M2 ;

69 RECT ©.117 0.136 0.149 0.501 ;

70 LAYER M1 ;

71 RECT MASK 2 ©.092 0.427 8.177 0.493 ;
72 RECT MASK 1 ©.092 0.144 8.174 0.213 ;
73 LAYER V1 ;

74 RECT ©.117 0.444 0.149 ©.476 ;

75 RECT ©.117 ©0.161 0.149 ©.193 ;

76 END

77 END Y

78 PIN clk

79 DIRECTION INPUT ;

80 USE SIGNAL ;

81 PORT

82 LAYER M1 ;

83 RECT MASK 2 ©.122 0.25 0.252 0.294 ;
84 END

85 END clk

86 PIN clkb

87 DIRECTION INPUT ;

88 USE SIGNAL ;

89 PORT

EL] LAYER M1 ;

91 RECT MASK 1 ©.122 0.35 ©.252 0.39%4 :

Can specify inputs/outputs during .lef
creation as well.

May be line near bottom which needs to be removed:
PROPERTY CatenaDesignType “devicelLevel” ;

.gds:

1) From Virtuoso CIW go to File -> Export -> Stream and load file and translate

Stream File
Library
I EDIF200... TopCell(s)
Refresh... = £t
CDL...
Make Read Only... = View(s]
DEF..)
Bookmarks » iEt Technology Library
. Stream Template File
E 1 sc10pSmcpp84_12Ip_base_rvt_c14 | NV_XOPSF_A10PSPPBATR_C14 symbol =
OASIS .

& 2 sc10pSmcppB4 12ip_base_rvt c14 [NV XOPSF A10PSPPB4TR C14 schematic
PRFlatten...

& 3 sc10pSmeppB4 12ip_base rvi ¢4 INV X24F A1DPSPPBATR_C14 schematic b Layermap

3 4 pll_aux_cells_10p5_track dco_FC_se_half layout

8 5 pll_aux_cells_10p5_track deo_FC_se2 layout * ObjectMap

& 6 pll_aux_cells_10p5_track dco_FC_se2 schematic

Virtuoso® XStream Out

17

auwx_cellfpass_gate_4N.gds

SCAMP

pass_gate_4N

layout

__ Stream Outfrom Virtual Memory

B2

Bz

» Log File strmOutlog
IS 7 pll_aux_cells_10p5_track deco FC se2 symbol
W 8 sc10pSmepp84 12ip_base rvt c14 test NORIXB X2N_A10PSPPBATR_C14 layout R Calong Madaifg EnshiE
3 9 pll_aux_cells_10p5_track dco_FC_se2 layout.fail
= 0 pll_aux_cells_10p5_track dco_FC_leg layout 7 Translate Apply Cancel Reset All Fields More Options
Close Data...
- Log: fn/marquette/v/nmichels/CD5.log - O x
Exit...
Bl 1o options PoK Help cadence
 ——
Attempting to check out the next available license Virtuoso_Schematic_Editer_XL ("95115") per license checkout order L, XL al
INFO (iclLic-382) License Virtuoso_Schematic_Editor_XL ("95115") was used to run Schematics L. =
il i
(imouse L Mz R:
e i

lib:

Setup for this is very manual. Just copy an old .lib file and replace pin names/directions with yours. This file is

just placeholder basically to pass through Cadre Flow later.

Great! You’ve now setup your AUX Cells and are ready to start working in the FASoC side of things. All of
these files you’ve created will go into blocks folder in your block generator directory, but before we move them,
let’s go ahead and take a look at all the files and what they are used for. You will also need to clean out or
modify all of the old files in the directory since you copied them from a different generator. This will all be

covered in the next section.

18

FASoC Block Generator

Before working in your fasoc directory, be sure to source the .tcshrc that was mentioned earlier. The modc12
alias loads the necessary modules.

Ssource .tcshrce
Smodc12

This section will cover the basic file structure for the fasoc generators, and the steps to make the design.

/
Let’s start with the top-level files. The main file here is the include.mk. The main change you need to make to
this file is updating the DESIGN_NAME to your block name; The rest can probably be left as default.

./blocks/

Next let’s look at the ./blocks directory. This directory is where you will store all of you aux cell files. The
general structure used for the aux cells is ./aux_cell_name/export/rest_of files. Put all of the aux cell files you
generated in the last section into this directory.

Jsrc/

Now let’s look at the ./src directory. This is where you will have your blocks Verilog code for both the top level
and the aux cells. The aux cell Verilog blocks are basically black boxes where you just specify the inputs and
outputs to the blocks. Note that power/ground shouldn’t be specified in any of these Verilog blocks. All power
routing is done later. The top-level Verilog block should be your design_name.v. This is where you will specify
the details of your block. The general structure of the top-level Verilog should be defining your parameters
(general things which change depending on auto generated design) followed by using generate and genvar
which essentially generate the rest of the Verilog code depending on the parameters. Refer to other generators
as reference.

Jscripts/dc/

The next directory is the scripts directory, which is divided into ./scripts/dc and ./scripts/innovus. The dc
portion of scripts is used to get through synthesis, and innovus is used for everything after. Let’s focus on the dc
part for now:

e constraints.tcl: Used to specify clk and set_dont touch for certain nets/cells you don’t want altered.
o Must have a clk for FASoC flow to work. Can use dummy clk.

e dc.filelist.tcl: Specify the Verilog files to be used in design

e dc.include.tcl, dc.read_design.tcl, dc.setup.tcl, report_timing.tcl: no change necessary

Once these are setup you can run “make synth” and check the results in ./results/dc/block_name.mapped.v to
see if it is as expected. If you run into errors before the design completes, you can check ./logs/dc/synth.log.
Once you have updated files, use “make bleach synth” to clear the old design. If still having trouble after
reading through log, reach out for assistance.

Assuming you made it through synth, we can now move on to the innovus scripts and the rest of the flow.

19

./scripts/innovus/

After synth, the rest of the APR stages are as follows: init, place, cts, postcts_hold, route, postroute, signoff. To
run each of these stages use the “make [stage]” command. Can also use “make debug_[stage]” command to
bring up a GUI to see what has been done and check the results. The files in ./scripts/innovus/ are a combination
of general files used for top level and multiple steps (EX: always.tcl, floorplan.tcl) and files which are run
before or after each of the stages (EX: pre_[stage].tcl, post_[stage].tcl). You will mostly be concerned with the
general files and the files up to pre_place.tcl (rest of stages are mostly default). Use “make bleach [stage]” to
clear any stage and rerun after changes. Also use “make bleach_all” to clear everything (synth and apr).

e always_source.tcl: Describes general block sizing and metal/via layers. Main thing to update in this file will
be the core_width and core_height of your design. Used in every stage.

e floorplan.tcl: Mostly grabs sizing from always_source.tcl, but can add cutrow areas to the floorplan as well
as sourcing a custom_place.tcl for your aux cells. Used in init.

e custom_place.tcl: This is a file you will have to write python code to generate for automating design. This
file is used to specify locations for aux cells. Not necessary to use in theory, but often APR will place things
in odd locations if not specified.

e setup.tcl: Grabs info on aux cells. May want to change welltaps intervals depending on design sizing.

e power_intent.cpf: Connects global power signals

e innovus_config.tcl: Can specify extra rules for innovus such as welltaps spacings.

e powerplan.tcl: Used to specify power rings/mesh. Update according to design needs.

e pre_place.tcl: Specify your design’s pins and locations. Also set_dont_touch your blocks again if necessary.

e Main changes listed above but refer to other pre/post_[stage].tcl files to see what they are doing.

Finishing Up
Go through each step using “make debug_[stage]” to see if it works. If you encounter issues, refer to the logs to
see the error. Feel free to reach out if having trouble.

Once you get through “make signoff” without any errors, you can check lvs and drc. Also note that if you make
changes and just want to rerun the whole design you can use “make design” to go all the way through signoff.
When running lvs/dre, can’t just use make debug_lvs/drc. You have to run “make lvs” then “make debug_lvs”
and same for drc.

Once you are DRC/LVS clean, then congratulations! You now have made a block using the FASoC flow! The
next step is to write some python codes that will automatically generate/alter certain files depending on desired
specs of your block. This will vary greatly from design to design, so this won’t be covered in much detail. Feel
free to look at the pymodules used in some other generators to get an idea of what needs to be changed. Good
luck!

When everything is finalized, use “make export” to get an export directory needed for top-level tapeout. Some
changes will need to be made to export, such as copying block_name_cutObs.lef over the lef file in export.

Before moving on to top-level, you should perform pre/post-PEX simulations on your design. If you find an
issue now before starting on top-level, it will save you a lot of time down the road. The basics of how to
simulate your design will be covered in the next section.

20

Pre/Post-PEX Simulations

This section will cover the basics of testing your FASoC design. The methods used here are not necessarily the
only way to do it, but should serve as a good point to get you started with simulating your design.

The first step is going to be to make an extraction directory and a simulation directory. The structure of these
directories can be copied from one of the other generators. You will then need to make a python code for
performing PEX on your design. You can copy one of the run_pex_flow.py files from another directory and
alter it to work for your design. This step can be a bit tricky, so feel free to reach out if having difficulties. Once
the extraction directory and run_pex_flow.py are set up, you should be able to generate the PEX netlist of your
design.

Next you will move the three design_name.pex.netlist* files from your extraction/run directory to your
simulation directory. At this point you will need a spice testbench to properly simulate your design. If you are
familiar with spice testbench files, you can manually create a testbench or alter an existing generator’s
testbench. The other option is to generate a testbench using virtuoso, which will be covered here.

Spice Testbench Generation
Note: Reference .sp AUX cell generation for how to change simulator to HSpice and generate netlist if you are
unsure how to do this.

1) Create a basic testbench of your design in virtuoso:

Example:

2) Launch ADE and change simulator to HSpice.
3) Change analysis settings to whatever you need

4) Create netlist

Steps continued on next page...

5) Modify netlist as follows
a. Remove aIIsubC|rCU|t definitions

** Desig lew na
.GLOBAL vdd! vss!
.LIB "/afs/eecs.umich.edu/kits/GF/12LP/V1.0_2.1/Models/HSPICE/models/12LP_HEfice.lib" TT
.PARAM wireopt=9

.PROBE TRAN
+ V(vout)

6 START=0.0

.OPTION

o
o
+
+

.subckt INV XOP6N A16P5PP84TR C14 a vdd VNW VpY VSS Y
xmmny y a vss vpw nfet m=1 1=
xmmpy y a vdd vnw pfet m=1 1=14e-9
.ends INV XOP6N A10P5PP84TR Cl4
]

subckt CAP UNIT 800f bot top
xc@ top bot mimcap w=E I 6 nrows=1 ncols=1 slots=0 dtemp=0
ends CAP UNIT 800f

b.

s 1V

.GLOBAL vdd! vss! .

.LIB "/afs/eecs.umich.edu/kits/GF/12LP/V1.0 2.1/Models/HSPICE/models/12LP HEfiice.lib" TT
.PARAM wireopt=9

.PROBE TRAN
+ V(vout)
- V(vin)
o

.TEMP 2

.OPTION

finesim outpu
finesim mode=

xi6 vin vout clk vdd! vss! AMP_12X buf pex
re vout vss! 2
vO vin vss! SIN 10e-
vl vdd! vss! DC=
4 v2 clk vss! PULSE 0 e e
.include "./ graphical stlmull scs”
.ENDJ}

c. Add any additional sources (Ex: VSS) or passives. Modify to whatever you need.

The next section will cover the top-level of adding your design along with others to the final chip with pads.
This is a lot of work, so don’t expect it to be as simple as dropping your design on the chip and doing some
routing. Try to have at least a week to get through this portion!

22

Top-Level for Tapeouts

The top-level is where everybody’s designs will be added onto one chip and routed to pads. If you have never
worked with adding pads before, then you should know that this step is likely more work than you are
anticipating. Make sure to set aside an adequate amount of time to get through this. Lots of errors and lots of
waiting for designs to finish.

Note: Some of the files will change depending on tapeout, and definitely anything related to dates. There are
also a couple shared directories where you will need to add your blocks and aux cells for everything to work.

The first step is going to be to create a new ~/fasoc_tapeout_[date]/ directory for you to work in. Follow the
steps used to make the first fasoc directory. Next you will navigate to the tapeout directory, which for the
example tapeout I will be using was ~/fasoc_tapeout_[date]/fasoc/private/tests/fasoc_to _gfl2 2021/. This is
where the main files you will change will be located.

/

The top-level file structure is actually quite similar to the block level file structure. It still uses the include.mk,
Jsrc/, and ./scripts/. One new directory is the ./fasoc_soc/ directory, which will be covered later. For now, let’s
update the include.mk

e include.mk: The main change you need to make here is to make a block subdirectory for your design and
import your block from the shared directory being used for this tapeout. For this tapeout the shared directory
was located at /afs/eecs.umich.edu/cadre/projects/fasoc/tapeout _gf12 2021/blocks/[block_name]. Follow
other designs and copy your block here and update the include.mk.

./fasoc_soc/soc_top/
Next let’s look at the fasoc_soc/soc_top files needed to update. There is too much to go into detail here and
other files, so just do best to refer to existing file and feel free to ask for assistance.

e fasoc_pin_mux.sv: Here all of the pads will be specified and the input/output wires to the pads
e fasoc_testchip.sv: Here you will specify pad 1/0s and load your block module and specify connections.

Jsrc/ & ./scripts/dc/

Next let’s consider the ./src/ files... actually let’s not because I didn’t use any! Hopefully someone else can
update this section in the future. My best guess is that it is used to define connections between multiple blocks
on the top level.

Moving on to the ./scripts/dc/ you will find this section is pretty much the same as the block level, so there isn’t
really much new to discuss here either.

./scripts/innovus/

Lastly is the ./scripts/innovus which also unfortunately for you does have some new stuff and changes.
Possibly the first difference you will notice is the addition of the new powerplan.tcl, io_floorplan.tcl, padring.io,
power_intent.cpf files. Let’s go over each of these and some other files that will need updating.

e BlockNamePowerPlan.tcl: Connects your VDD/VSS to pads.

e io_floorplan.tcl: Specify non VSS power pads for your block

e padring.io: Place pads in actual locations

e power_intent.cpf: Connects internal pad power rings to each other. Refer to the io document for more info.
e Other: Other files are similar to block level, but refer to each to see what it is doing.

23

There is also one more shared directory you will need to copy files to before you can run your design. go to
“lafs/eecs.umich.edu/cadre/projects/fasoc/share/aux_lib_gfl2lp 10p5_track™ and copy your aux-cells there and
mimic the file structure of other blocks. Make a directory with today's date and tag that folder as "latest”. Tag
example(type this in the command line): In -s 2020 _05_19 latest. So the cadre flow goes to this shared directory
and grabs the aux-cells for the cdl and stuffs that are needed for LVS.

Verifying Design

Once you have everything setup, use similar make commands as before to run check design. Before running
make synth or make design, need to run “make blocks” which grabs all of the blocks from the shared folder.
Then can run as normal. When you get to checking lvs/drc, always check lvs first as this is much quicker. For a
quick drc check, you can use “make drc_beol” which can be used to see some quick errors. The drc_beol will
have some errors that can be ignored, and also won’t check all errors, so will need to eventually run make drc. If
you have passed all of that, there is an additional “make dfm” which will check manufacturing rules. Note that
drc and dfm can be run in parallel if you first run “make gds top” and wait for it to finish. You will almost
certainly have some errors in lvs/drc, so don’t hesitate to reach out for assistance if you can’t figure it out.

Once all of that is clean, you can work to get your design on GitHub.

Working with GitHub

First a bit of a warning: I am by no means an expert at GitHub. This is basically just to cover the bare minimum
commands/steps you will need to know to be able to keep up with changes being pushed to GitHub and how to
upload your own changes. If there is anything you would like to add, please let me know and | can update this
section.

Merging Changes

Okay! Let’s assume that you’ve verified your design and are ready to upload your change and be done! Oh
wait.... it looks like someone just pushed their changes before you ®! So now it is your job to merge your
changes with what was just pushed. To do this, follow these steps:

1) Check that the files you want to commit are ready (git status)
a) Look to see what files are set to be merged and use “git add” to add files you want to be committed if
they aren’t already there
2) Commit your changes (git commit -m “message about commit”)
3) Pull the most recent changes (git pull)
a) This will try to resolve conflicts but will likely fail for some files
4) See which files were not merged fully (git status)
5) Go to files and search for HEAD and merge files manually (gvim ./file; /[HEAD)
6) Commit again after merging changes (git commit -m “message about commit™)
a) May have “git add” the files again before committing
7) check status again (git status)
a) Shouldn’t be any unmerged

Great! Now you are back to being on track to push your changes! Make sure to remake the design and check
Ivs/drc/dfm again before uploading your files. Change may have caused new issues. Once your design is back to
being clean, you should be ready to push your design. It is good practice to communicate with whoever else is
working on the chip before pushing your design just to double check if everything is okay. People may get
angry, but everyone is just frustrated from all of the work during tapeout, so don’t take too seriously.

24

Pushing Final Changes
Now that everything is back up and running, we are ready to push our final changes to GitHub by following
these steps:

1) cdold_fasoc_5 16/fasoc/private/

2) git push origin master

3) cd..

4) (old_fasoc_5 16/fasoc/)

5) git add private

6) git commit -m “Updating private to latest”
7) git push origin master

Yay! You’ve uploaded your block and are free at last! The next section will cover how to do the final upload for
the tapeout, but you will likely not be responsible for this if you are a newer student. It is still nice to reference
though, so feel free to stick around!

Final Tapeout Upload

For the final upload, there is a google drive shared folder where certain files will need to be uploaded. For this

tapeout it was in “2017 IDEA FASoC/Chip Tapeouts/GF12 Testchip 2021/Submissions” at the following URL
https://drive.google.com/drive/u/0/folders/1406i6m5wXRW5sz0uL4YvibnODoQHa_E1. The final files which
need to be uploaded are shown below

Shared withme > =« > Submissions > Final V4 =
Folders
BB DFM_Reports

Files

R T

GF12LP WRB Request - FASoC

B fasoc_testchip.top.gds.gz ¥ fasoc_testchip.top.gds.gz B dc.summary B drcresults 2021_GF_Waiver_FASoC.pptx

i

e Copy Waiver from other drive submission

e Copy drc.summary as‘“./results/calibre/drc/drc.summary”

e Copy drc.results as “./results/calibre/drc/drc.results”

e Copy DFM_Reports as “./results/calibre/dfm/DFM_rundir .../SIGN-OFF/Reports” folder (change name)

e Copy fasoc_testchip.top.gds.gz as “./results/calibre/fasoc_testchip.top.gds.gz”

e Make md5sum of top.gds.gz using “mdSsum fasoc_testchip.top.gds.gz > fasoc_testchip.top.gds.gz.mdSsum”
o Copy fasoc_testchip.top.gds.gz.md5sum to drive as well

If you are doing this all for the first time, please have someone walk through it with you to verify everything is
correct.

Okay, now you are really done! In the future additional sections on common problems and solutions may be
added, so if you run into anything you want to add, let me know.

Appendix
Old README/Tutorial by Kyumin. Still useful to look at to get a quick glance at overall steps to complete.

steps to follow

-prepare

1. design name in include.mk
2. sr¢/

3. scripts/

O~ O LN R

9 -synthesis
18 1. make synth
11 2. check results/dc/design_name.mapped.v

13 -APR

14 "stage": init, place, cts, postcts hold, route, postroute, signoff
15 1. make "stage"

16 2. make debug "stage"

17 - gui will pop up, check the placements/routings

18

19 #scripts:

20 1. always source.tcl: used in every step. (ex: core width, core height)
21 2. floorplan.tcl: used in init

22 3. pre "stage".tcl: used right before "stage"

23 4. post "stage".tcl: used right after "stage"

24

25 -calibre

26 1. make lvs
27 2. (make drc)

29 -custom pex
30 1. use the python code

34 * debugging: check logs/*/"stage".log]]

I also have some zoom help sessions saved if you are interested in using those for additional assistance.

